This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292246 #14 Sep 18 2017 09:23:32 %S A292246 0,1,0,2,3,0,4,1,2,14,5,12,6,7,8,2,1,0,0,9,26,22,3,20,6,5,16,10,29,10, %T A292246 4,11,30,2,25,60,56,13,28,54,15,48,24,17,44,8,5,12,38,3,30,26,1,24,20, %U A292246 1,18,6,19,62,14,53,4,14,45,0,42,7,124,118,41,50,58,13,116,106,11,40,104,33,32,98,21,92,6,59,88,18,21,82,76,9,34,36,23,74 %N A292246 Base-2 expansion of a(n) encodes the steps where numbers of the form 3k+2 are encountered when map x -> A253889(x) is iterated down to 1, starting from x=n. %H A292246 Antti Karttunen, <a href="/A292246/b292246.txt">Table of n, a(n) for n = 1..16384</a> %H A292246 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %H A292246 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A292246 a(1) = 0; for n > 1, a(n) = 2*a(A253889(n)) + floor((n mod 3)/2). %F A292246 a(n) = A289814(A292243(n)). %F A292246 A000120(a(n)) = A254045(n). %F A292246 a(n) AND A292244(n) = a(n) AND A292245(n) = 0, where AND is a bitwise-AND (A004198). %e A292246 For n = 2, the starting value is of the form 3k+2, after which follows A253889(3) = 1, the end point of iteration, which is not, thus a(2) = 1*(2^0) = 1. %e A292246 For n = 4, the starting value is not of the form 3k+2, while A253889(4) = 2 is, thus a(4) = 0*(2^0) + 1*(2^1) = 2. %t A292246 f[n_] := Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1]; g[n_] := (Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] + 1)/2 &@ Transpose@ FactorInteger@ n; Map[FromDigits[#, 2] &[IntegerDigits[#, 3] /. d_ /; d > 0 :> d - 1] &, Array[a, 96]] (* _Michael De Vlieger_, Sep 16 2017 *) %o A292246 (Scheme, with memoization-macro definec) %o A292246 (definec (A292246 n) (if (= 1 n) 0 (+ (floor->exact (/ (modulo n 3) 2)) (* 2 (A292246 (A253889 n)))))) %Y A292246 Cf. A064216, A253889, A254045, A289814, A292243, A292244, A292245. %Y A292246 Cf. also A291759. %K A292246 nonn,base %O A292246 1,4 %A A292246 _Antti Karttunen_, Sep 15 2017