This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292272 #24 Jun 29 2022 17:40:52 %S A292272 0,1,2,2,4,5,4,4,8,9,10,10,8,9,8,8,16,17,18,18,20,21,20,20,16,17,18, %T A292272 18,16,17,16,16,32,33,34,34,36,37,36,36,40,41,42,42,40,41,40,40,32,33, %U A292272 34,34,36,37,36,36,32,33,34,34,32,33,32,32,64,65,66,66,68,69,68,68,72,73,74,74,72,73,72,72,80,81,82,82,84,85,84,84,80,81,82,82,80,81 %N A292272 a(n) = n - A048735(n) = n - (n AND floor(n/2)). %C A292272 In binary expansion of n, change those 1's to 0's that have an 1-bit next to them at their left (more significant) side. Only fibbinary numbers (A003714) occur as terms. %H A292272 Antti Karttunen, <a href="/A292272/b292272.txt">Table of n, a(n) for n = 0..16383</a> %H A292272 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A292272 a(n) = n - A048735(n) = n - (n AND floor(n/2)) = n XOR (n AND floor(n/2)), where AND is bitwise-AND (A004198) and XOR is bitwise-XOR (A003987). %F A292272 a(n) = n AND A003188(n). %F A292272 a(n) = A292382(A005940(1+n)). %F A292272 A059905(a(n)) = A292371(n). %F A292272 For all n >= 0, A085357(a(n)) = 1. %F A292272 a(n) = A213064(n) / 2. - _Kevin Ryde_, Jun 02 2020 %F A292272 a(n) = n AND NOT floor(n/2). - _Chai Wah Wu_, Jun 29 2022 %e A292272 From _Kevin Ryde_, Jun 02 2020: (Start) %e A292272 n = 1831 = binary 11100100111 %e A292272 a(n) = 1060 = binary 10000100100 high 1 of each run %e A292272 (End) %t A292272 Table[n - BitAnd[n, Floor[n/2]], {n, 0, 93}] (* _Michael De Vlieger_, Sep 17 2017 *) %o A292272 (PARI) a(n) = bitnegimply(n,n>>1); \\ _Kevin Ryde_, Jun 02 2020 %o A292272 (Python) %o A292272 def A292272(n): return n&~(n>>1) # _Chai Wah Wu_, Jun 29 2022 %Y A292272 Cf. A003188, A003714, A003987, A004198, A005940, A048735, A085357, A292371, A292382. %K A292272 nonn,base %O A292272 0,3 %A A292272 _Antti Karttunen_, Sep 16 2017