cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292281 Number of magic labelings of the prism graph I X C_6 having magic sum n.

Original entry on oeis.org

1, 20, 167, 867, 3322, 10309, 27410, 64770, 139479, 278674, 523457, 933725, 1594008, 2620411, 4168756, 6444020, 9711165, 14307456, 20656363, 29283143, 40832198, 56086305, 75987814, 101661910, 134442035, 175897566, 227863845, 292474657, 372197252, 469870007, 588742824
Offset: 0

Views

Author

David J. Seal, Sep 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := SeriesCoefficient[(1 + 11 x + 24 x^2 + 11 x^3 + x^4)/(1 - x)^7, {x, 0, n}]; Table[f[n] + 2 Sum[f[i], {i, 0, n - 1}], {n, 0, 24}] (* Michael De Vlieger, Sep 15 2017 *)

Formula

a(n) = A244879(n) + 2*Sum_{i=0..n-1} A244879(i).
From Colin Barker, Sep 13 2017: (Start)
G.f.: (1 + x)*(1 + 11*x + 24*x^2 + 11*x^3 + x^4) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
[Proof of the g.f. follows from the g.f. of A244879 with the resummation demonstrated in A289992: g.f. = A244879(x)*(1+2*x/(1-x)). - R. J. Mathar, Mar 09 2025]