cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292288 Numerators of smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.

This page as a plain text file.
%I A292288 #13 Feb 16 2025 08:33:51
%S A292288 3,4,7,6,11,8,15,13,16,12,23,14,27,22,21,18,35,20,39,29,34,24,47,31,
%T A292288 67,40,37,30,59,32,63,45,52,87,43,38,75,58,53,42,83,44,87,56,70,48,95,
%U A292288 57,71,122,69,54,107,67,71,77,88,60,119,62,123,94,73,81,79
%N A292288 Numerators of smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.
%C A292288 See comments at A291093.
%C A292288 For prime base p, (p + 1)/(p^2 + p) simplifies to 1/p by cancelling digit k = 1 in the numerator and denominator. This fraction is written "11/110" in base p and simplifies to "1/10" = 1/p.
%C A292288 Smallest bases b for which n/d, simplified, has a numerator greater than 1 are 51, 77, 92, ...
%C A292288 See link "Base-b proper fractions ..." below for more information. - _Michael De Vlieger_, Sep 18 2017
%H A292288 Michael De Vlieger, <a href="/A292288/b292288.txt">Table of n, a(n) for n = 2..120</a>
%H A292288 Michael De Vlieger, <a href="/A292289/a292289.txt">Base-b proper fractions n/d having nontrivial anomalous cancellation, with 2 <= b <= 120 and d <= b^2 + b.</a>
%H A292288 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AnomalousCancellation.html">Anomalous Cancellation</a>
%F A292288 a(p) = (p + 1), for prime p.
%e A292288 a(5) = 6, the corresponding denominator is 30; these are written "11/110" in quinary, cancelling a 1 in both numerator and denominator yields "1/10" which is 1/5. 6/30 = 1/5.
%e A292288 Table of smallest values correlated with least numerators:
%e A292288 b = base and index.
%e A292288 n = smallest numerator that pertains to d (this sequence).
%e A292288 d = smallest denominator that has a nontrivial anomalous cancellation in base b.
%e A292288 n/d = simplified ratio of numerator n and denominator d.
%e A292288 k = base-b digit cancelled in the numerator and denominator to arrive at n/d.
%e A292288 b-n+1 = difference between base and numerator plus one.
%e A292288 b^2-d = difference between the square of the base and denominator.
%e A292288 .
%e A292288    b     n      d   n/d     k  b-n+1  b^2-d
%e A292288    -----------------------------------------
%e A292288    2     3      6   1/2     1    0     -2
%e A292288    3     4     12   1/3     1    0     -3
%e A292288    4     7     14   1/2     3    2      2
%e A292288    5     6     30   1/5     1    0     -5
%e A292288    6    11     33   1/3     5    4      3
%e A292288    7     8     56   1/7     1    0     -7
%e A292288    8    15     60   1/4     7    6      4
%e A292288    9    13     39   1/3     4    3     42
%e A292288   10    16     64   1/4     6    5     36
%e A292288   11    12    132   1/11    1    0    -11
%e A292288   12    23    138   1/6    11   10      6
%e A292288   13    14    182   1/13    1    0    -13
%e A292288   14    27    189   1/7    13   12      7
%e A292288   15    22    110   1/5     7    6    115
%e A292288   16    21     84   1/4     5    4    172
%t A292288 Table[Flatten@ Catch@ Do[If[Length@ # > 0, Throw[#], #] &@ Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ], {m, b, b^2 + b}], {b, 2, 30}][[All, 1]] (* _Michael De Vlieger_, Sep 15 2017 *)
%Y A292288 Cf. A291093/A291094, A292289 (denominators), A292393 (digit that is canceled).
%K A292288 nonn,frac,base
%O A292288 2,1
%A A292288 _Michael De Vlieger_, Sep 15 2017