A292289 Smallest denominator of a proper fraction that has a nontrivial anomalous cancellation in base b.
6, 12, 14, 30, 33, 56, 60, 39, 64, 132, 138, 182, 189, 110, 84, 306, 315, 380, 390, 174, 272, 552, 564, 155, 402, 360, 259, 870, 885, 992, 1008, 405, 624, 609, 258, 1406, 1425, 754, 530, 1722, 1743, 1892, 1914, 504, 1120, 2256, 2280, 399, 1065, 1037, 897, 2862
Offset: 2
Examples
a(5) = 30, the corresponding numerator is 6; these are written "11/110" in quinary, cancelling a 1 in both numerator and denominator yields "1/10" which is 1/5. 6/30 = 1/5. Table of smallest values correlated with least numerators: b = base and index. n = smallest numerator that pertains to d. d = smallest denominator that has a nontrivial anomalous cancellation in base b (this sequence). n/d = simplified ratio of numerator n and denominator d. k = base-b digit cancelled in the numerator and denominator to arrive at n/d. b-n+1 = difference between base and numerator plus one. b^2-d = difference between the square of the base and denominator. . b n d n/d k b-n+1 b^2-d ----------------------------------------- 2 3 6 1/2 1 0 -2 3 4 12 1/3 1 0 -3 4 7 14 1/2 3 2 2 5 6 30 1/5 1 0 -5 6 11 33 1/3 5 4 3 7 8 56 1/7 1 0 -7 8 15 60 1/4 7 6 4 9 13 39 1/3 4 3 42 10 16 64 1/4 6 5 36 11 12 132 1/11 1 0 -11 12 23 138 1/6 11 10 6 13 14 182 1/13 1 0 -13 14 27 189 1/7 13 12 7 15 22 110 1/5 7 6 115 16 21 84 1/4 5 4 172
Links
- Michael De Vlieger, Table of n, a(n) for n = 2..120
- Michael De Vlieger, Base-b proper fractions n/d having nontrivial anomalous cancellation, with 2 <= b <= 120 and d <= b^2 + b.
- Eric Weisstein's World of Mathematics, Anomalous Cancellation
Programs
-
Mathematica
Table[SelectFirst[Range[b, b^2 + b], Function[m, Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ] != {}]], {b, 2, 30}] (* Michael De Vlieger, Sep 13 2017 *)
Formula
a(p) = p^2 + p.
Comments