This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292294 #22 May 22 2019 23:27:32 %S A292294 0,0,0,0,3,39,357,2952,23622,186984,1474773,11617815,91485075, %T A292294 720308160,5671099008,44648794944,351520074867,2767513935927, %U A292294 21788596994037,171541276628904,1350541654293318,10632792057873480,83711795070905925,659061569195852295 %N A292294 Number of vertices of type E at level n of the hyperbolic Pascal pyramid. %H A292294 Colin Barker, <a href="/A292294/b292294.txt">Table of n, a(n) for n = 0..1000</a> %H A292294 László Németh, <a href="http://arxiv.org/abs/1511.02067">Hyperbolic Pascal pyramid</a>, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 1). %H A292294 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (12,-37,37,-12,1). %F A292294 a(n) = 12*a(n-1) - 37*a(n-2) + 37*a(n-3) - 12*a(n-4) + a(n-5), n >= 6. %F A292294 G.f.: 3*x^4*(1 + x) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)). - _Colin Barker_, Sep 17 2017 %F A292294 a(n) = 1 + (A001091(n-2) - 3*Lucas(2*(2-n)))/5 for n > 0. - _Ehren Metcalfe_, Apr 18 2019 %t A292294 CoefficientList[Series[3*x^4*(1 + x)/((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 17 2017 *) %t A292294 LinearRecurrence[{12,-37,37,-12,1},{0,0,0,0,3,39},30] (* _Harvey P. Dale_, Oct 09 2018 *) %o A292294 (PARI) concat(vector(4), Vec(3*x^4*(1 + x) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)) + O(x^30))) \\ _Colin Barker_, Sep 17 2017 %Y A292294 Cf. A264236. %K A292294 nonn,easy %O A292294 0,5 %A A292294 _Eric M. Schmidt_, Sep 13 2017