This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292297 #14 Sep 18 2017 08:04:08 %S A292297 0,0,0,6,36,210,1452,12138,114684,1147002,11729148,120902202, %T A292297 1249686492,12929303130,133809210108,1384977143610,14335551770268, %U A292297 148385432561562,1535924231893308,15898233466089210,164561459781232092,1703363953470584922,17631399812695032444 %N A292297 Sum of values of vertices of type C at level n of the hyperbolic Pascal pyramid. %H A292297 Colin Barker, <a href="/A292297/b292297.txt">Table of n, a(n) for n = 0..988</a> %H A292297 László Németh, <a href="http://arxiv.org/abs/1511.02067">Hyperbolic Pascal pyramid</a>, arXiv:1511.0267 [math.CO], 2015 (3rd line of Table 2). %H A292297 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (18,-99,226,-224,92,-12). %F A292297 a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7. %F A292297 G.f.: 6*x^3*(1 - 12*x + 26*x^2 - 20*x^3) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - _Colin Barker_, Sep 17 2017 %t A292297 CoefficientList[Series[6*x^3*(1 - 12*x + 26*x^2 - 20*x^3)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Sep 17 2017 *) %o A292297 (PARI) concat(vector(3), Vec(6*x^3*(1 - 12*x + 26*x^2 - 20*x^3) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ _Colin Barker_, Sep 17 2017 %Y A292297 Cf. A264237. %K A292297 nonn,easy %O A292297 0,4 %A A292297 _Eric M. Schmidt_, Sep 14 2017