cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292299 Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid.

This page as a plain text file.
%I A292299 #15 Sep 18 2017 08:04:26
%S A292299 0,0,0,0,18,312,3798,41544,438270,4566120,47368110,490668936,
%T A292299 5080145070,52588590888,544355820750,5634640292424,58323941179182,
%U A292299 603707608725096,6248936971173390,64682313170747016,669522088312069614,6930176023749038760,71733763792342350798
%N A292299 Sum of values of vertices of type E at level n of the hyperbolic Pascal pyramid.
%H A292299 Colin Barker, <a href="/A292299/b292299.txt">Table of n, a(n) for n = 0..987</a>
%H A292299 László Németh, <a href="http://arxiv.org/abs/1511.02067">Hyperbolic Pascal pyramid</a>, arXiv:1511.0267 [math.CO], 2015 (5th line of Table 2).
%H A292299 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (18,-99,226,-224,92,-12).
%F A292299 a(n) = 18*a(n-1) - 99*a(n-2) + 226*a(n-3) - 224*a(n-4) + 92*a(n-5) - 12*a(n-6), n >= 7.
%F A292299 G.f.: 6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)). - _Colin Barker_, Sep 17 2017
%t A292299 CoefficientList[Series[6*x^4*(3 - 2*x - 6*x^2)/((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Sep 17 2017 *)
%o A292299 (PARI) concat(vector(4), Vec(6*x^4*(3 - 2*x - 6*x^2) / ((1 - x)*(1 - 4*x + 2*x^2)*(1 - 13*x + 28*x^2 - 6*x^3)) + O(x^30))) \\ _Colin Barker_, Sep 17 2017
%Y A292299 Cf. A264237.
%K A292299 nonn,easy
%O A292299 0,5
%A A292299 _Eric M. Schmidt_, Sep 14 2017