cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292306 a(n) = [x^n] Product_{k>=1} (1 + n^n*x^k).

This page as a plain text file.
%I A292306 #7 Aug 22 2018 06:57:42
%S A292306 1,1,4,756,65792,19534375,101564310279744,558547898753326097,
%T A292306 9444733810164237336576,174449211609498720646587480,
%U A292306 10000000004000000000400000000010000000000,6626407607852766876000106671521201448502431912
%N A292306 a(n) = [x^n] Product_{k>=1} (1 + n^n*x^k).
%H A292306 Vaclav Kotesovec, <a href="/A292306/b292306.txt">Table of n, a(n) for n = 0..56</a>
%F A292306 Conjecture: log(a(n)) ~ (sqrt(2)*n^(3/2) - n/2)*log(n). - _Vaclav Kotesovec_, Aug 22 2018
%t A292306 nmax = 14; Table[SeriesCoefficient[Product[(1+n^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%Y A292306 Cf. A265949, A292190, A292305.
%K A292306 nonn
%O A292306 0,3
%A A292306 _Vaclav Kotesovec_, Sep 14 2017