cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292310 Triangular numbers that are equidistant from two other triangular numbers.

This page as a plain text file.
%I A292310 #37 Jun 25 2023 05:44:23
%S A292310 3,21,28,36,78,105,153,171,190,210,253,325,351,378,465,528,666,703,
%T A292310 903,946,990,1035,1128,1176,1275,1378,1485,1540,1596,1653,1711,1770,
%U A292310 1891,1953,2278,2346,2556,2628,2775,2926,3003,3081,3160,3403,3570,3741,3828,4095,4186,4278,4371,4656
%N A292310 Triangular numbers that are equidistant from two other triangular numbers.
%C A292310 Triangular numbers which are the arithmetic mean of two other triangular numbers. - _R. J. Mathar_, Oct 01 2017
%F A292310 a(n) = A292309(n)/3.
%e A292310 3 is in the sequence because 0 = A000217(0), 6 = A000217(3), and the distances from 3 to 0 and 3 to 6 are the same.
%e A292310 153 is in the sequence because 153 = A000217(17), 6 = A000217(2), 300 = A000217(24), and the two distances 300-153 = 153-6 = 147 are the same.
%p A292310 isA292310 := proc(n)
%p A292310     local ilow ;
%p A292310     if isA000217(n) then
%p A292310         for ilow from 0 do
%p A292310             tilow := A000217(ilow) ;
%p A292310             if tilow >= n then
%p A292310                 return false ;
%p A292310             elif isA000217(2*n-tilow) then
%p A292310                 return true ;
%p A292310             end if;
%p A292310         end do:
%p A292310     else
%p A292310         false;
%p A292310     end if;
%p A292310 end proc:
%p A292310 for n from 1 to 5000 do
%p A292310     if isA292310(n) then
%p A292310         printf("%d,",n) ;
%p A292310     end if;
%p A292310 end do: # _R. J. Mathar_, Oct 01 2017
%t A292310 Module[{t = 3, k = 2, i, e, v}, Reap[While[t <= 6000, i = k; e = 0; v = t + i; While[i > 0 && e == 0, If[IntegerQ@Sqrt[8v + 1], e = 1; Sow[t]]; i--; v += i]; k++; t += k]][[2, 1]]] (* _Jean-François Alcover_, Jun 25 2023, after first PARI code *)
%o A292310 (PARI) t=3; k=2; while(t<=6000, i=k; e=0; v=t+i; while(i>0&&e==0, if(issquare(8*v+1), e=1; print1(t,", ")); i--; v+=i); k++; t+=k)
%o A292310 (PARI) upto(n) = {my(t = 0, i = 0, triangulars = List([0]), res = List); while(t <= n, i++; t+=i; listput(triangulars, t)); for(i=2,#triangulars, tr = triangulars[i]<<1; for(j = 1, i-1, if(issquare(8 * (tr - triangulars[j]) + 1), listput(res, triangulars[i]); next(2)))); res} \\ _David A. Corneth_, Oct 04 2017
%Y A292310 Cf. A000217, A292309, A292313, A292314, A292316.
%K A292310 nonn
%O A292310 1,1
%A A292310 _Antonio Roldán_, Sep 14 2017
%E A292310 Term 105 added by _David A. Corneth_, Oct 04 2017