cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292315 Positive integers not divisible by any number of the form 2^n + 1 for n >= 0.

Original entry on oeis.org

1, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 107, 109, 113, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 203, 209, 211, 217, 223, 227, 229, 233, 239, 241, 247, 251, 253, 259, 263, 269, 271, 277, 281, 283, 287
Offset: 1

Views

Author

Jeffrey Shallit, Sep 14 2017

Keywords

Comments

This is the same as odd numbers not divisible by numbers of the form 2^(2^i) + 1, i >= 0.
Asymptotically, the number of such numbers <= x is x/4 + o(x).
Composite terms are 49, 77, 91, 121, 133, 143, 161, ... - Altug Alkan, Sep 14 2017

Crossrefs

Positions of zeros in A305436.

Programs

  • Mathematica
    Position[Table[DivisorSum[n, 1 &, IntegerQ@ Log2[# - 1] &], {n, 288}], 0][[All, 1]] (* Michael De Vlieger, Jun 11 2018 *)
  • PARI
    list(lim)=my(v=List(),u=[],t); lim\=1; forstep(n=1,lim,[4,2], if(gcd(n,1431655765)==1, listput(v,n))); v=Vec(v); for(i=5,logint(logint(lim-1,2),2), t=2^2^i+1; u=concat(u,t*[1..lim\t])); u=Set(u); setminus(v,u) \\ Charles R Greathouse IV, Sep 14 2017