A292323 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = (1 - S)(1 + S^2).
1, 0, 0, 2, 1, 0, 5, 6, 1, 11, 23, 10, 22, 71, 57, 50, 191, 243, 164, 474, 860, 676, 1175, 2674, 2758, 3225, 7626, 10256, 10313, 20882, 34642, 36384, 57921, 108270, 130025, 170606, 321415, 448093, 540825, 934958, 1468860, 1798559, 2750605, 4605556, 6042649
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, -1, 4, -2, 1, -3, 1, 0, 1)
Programs
-
Mathematica
z = 60; s = x/(x - x^3); p = (1 - s)(1 + s^2); Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079978 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292323 *)
-
PARI
x='x+O('x^99); Vec((1-x+x^2-2*x^3+x^4+x^6)/((1-x-x^3)*(1+x^2-2*x^3+x^6))) \\ Altug Alkan, Oct 05 2017
Formula
G.f.: -((1 - x + x^2 - 2 x^3 + x^4 + x^6)/((-1 + x + x^3) (1 + x^2 - 2 x^3 + x^6))).
a(n) = a(n-1) - a(n-2) + 4*a(n-3) - 2*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) + a(n-9) for n >= 10.
Comments