A292324 p-INVERT of (1,0,0,1,0,0,0,0,0,...), where p(S) = (1 - S)^2.
2, 3, 4, 7, 12, 19, 28, 42, 64, 97, 144, 212, 312, 459, 672, 979, 1422, 2062, 2984, 4308, 6206, 8925, 12816, 18376, 26310, 37620, 53728, 76648, 109230, 155507, 221184, 314325, 446320, 633249, 897804, 1271993, 1800942, 2548242, 3603468, 5092747, 7193604
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 2, -2, 0, 0, -1)
Programs
-
Mathematica
z = 60; s = x + x^4; p = (1 - s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292324 *)
Formula
G.f.: -(((-1 + x) (1 + x) (1 - x + x^2) (2 + x + x^2 + x^3))/(-1 + x + x^4)^2).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-4) - 2*a(n-5) - a(n-8) for n >= 9.
a(n) = a(n-1)+a(n-4)+A003269(n+2). - R. J. Mathar, Mar 19 2024
Comments