A292325 p-INVERT of (1,0,0,0,1,0,0,0,0,0,...), where p(S) = (1 - S)^2.
2, 3, 4, 5, 8, 13, 20, 29, 40, 56, 80, 115, 164, 230, 320, 445, 620, 864, 1200, 1660, 2290, 3155, 4344, 5975, 8206, 11252, 15408, 21078, 28810, 39344, 53680, 73173, 99662, 135640, 184480, 250740, 340578, 462316, 627200, 850420, 1152480, 1561043, 2113420
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 2, -2, 0, 0, 0, -1)
Programs
-
Mathematica
z = 60; s = x + x^5; p = (1 - s)^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292325 *)
Formula
G.f.: -(((-1 + x) (1 + x^4) (2 + x + x^2 + x^3 + x^4))/((1 - x + x^2)^2 (-1 + x^2 + x^3)^2)).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-5) - 2*a(n-6) - a(n-10) for n >= 11.
Comments