This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292349 #23 Oct 06 2024 09:44:51 %S A292349 7,19,23,43,71,101 %N A292349 Pri-most primes: primes p such that the majority of bits in the binary representation of p satisfy the following: complementing this bit produces a prime number. %C A292349 Primes in A292348. %C A292349 Conjecture: the sequence is finite. %C A292349 Any further terms are > 10^12. - _Lucas A. Brown_, Oct 05 2024 %t A292349 Select[Prime@ Range[10^5], Function[n, Function[d, 2 Count[Array[FromDigits[#, 2] &@ MapAt[Mod[# + 1, 2] &, d, #] &, Length@ d], _?PrimeQ] > Length@ d]@ IntegerDigits[n, 2]]] (* _Michael De Vlieger_, Dec 08 2017 *) %o A292349 (Python) %o A292349 from sympy import isprime, primerange %o A292349 for i in primerange(1, 1000): %o A292349 delta = 0 %o A292349 bit = 1 %o A292349 while bit <= i: %o A292349 if isprime(i^bit): delta += 1 %o A292349 else: delta -= 1 %o A292349 bit*=2 %o A292349 if delta > 0: print(str(i), end=',') %Y A292349 Cf. A000040, A137985, A292348. %K A292349 nonn,base,more,hard %O A292349 1,1 %A A292349 _Alex Ratushnyak_, Dec 07 2017