A292352 Numbers that generate Lucas-Carmichael numbers using an adjusted version of Erdős's method.
24, 36, 40, 48, 60, 72, 80, 84, 96, 108, 120, 144, 168, 180, 192, 200, 216, 240, 252, 270, 300, 324, 336, 360, 384, 400, 420, 432, 440, 468, 480, 504, 528, 540, 576, 588, 600, 624, 648, 660, 672, 714, 720, 744, 756, 768, 792, 810, 840, 864, 900, 912, 936, 960
Offset: 1
Keywords
Examples
The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
Programs
-
Mathematica
a = {}; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > 0, AppendTo[a, n]], {n, 1, 1000}]; a
Comments