A292353 Numbers n with a record number of Lucas-Carmichael numbers that can be generated from them using an adjusted version of Erdős's method.
24, 72, 216, 240, 360, 720, 1440, 2160, 2520, 4320, 5040, 7560, 10080, 15120, 20160
Offset: 1
Examples
The set of primes for n = 24 is P={2, 3, 5, 7, 11, 23}. One subset, {5, 7, 11, 23} have c == -1 (mod n): c = 5*7*11*23 = 8855. 24 is the least number that generates Lucas-Carmichael numbers thus a(1)=24.
Programs
-
Mathematica
a = {}; cmax = 0; Do[p = Select[Divisors[n] - 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > cmax, cmax = c; AppendTo[a, n]], {n, 1, 1000}]; a
Comments