This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292357 #52 Aug 05 2024 09:55:47 %S A292357 1,1,1,1,5,1,1,15,15,1,1,39,111,39,1,1,97,649,649,97,1,1,237,3495, %T A292357 7943,3495,237,1,1,575,18189,86995,86995,18189,575,1,1,1391,93231, %U A292357 910667,1890403,910667,93231,1391,1 %N A292357 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n. %C A292357 Equivalently, the number of m X n binary arrays with all 1's connected and at least one 1 on each edge. %H A292357 Andrew Howroyd, <a href="/A292357/b292357.txt">Table of n, a(n) for n = 1..435</a> %H A292357 Andrew Howroyd, <a href="/A292357/a292357.txt">Fixed polyominoes by width, height and number of cells</a> %H A292357 Louis Marin, <a href="https://arxiv.org/abs/2406.16413">Counting Polyominoes in a Rectangle b X h</a>, arXiv:2406.16413 [cs.DM], 2024. See p. 145. %H A292357 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a> %F A292357 T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A287151(m, n). %e A292357 Array begins: %e A292357 =============================================================== %e A292357 m\n| 1 2 3 4 5 6 7 %e A292357 ---|----------------------------------------------------------- %e A292357 1 | 1 1 1 1 1 1 1... %e A292357 2 | 1 5 15 39 97 237 575... %e A292357 3 | 1 15 111 649 3495 18189 93231... %e A292357 4 | 1 39 649 7943 86995 910667 9339937... %e A292357 5 | 1 97 3495 86995 1890403 38916067 782256643... %e A292357 6 | 1 237 18189 910667 38916067 1562052227 61025668579... %e A292357 7 | 1 575 93231 9339937 782256643 61025668579 4617328590967... %e A292357 ... %e A292357 T(2,2) = 5 counts 4 3-ominoes of shape 2x2 and 1 4-omino of shape 2x2. %e A292357 T(3,2) = 15 counts 8 4-ominoes of shape 3x2, 6 5-ominoes of shape 3x2, and 1 6-omino of shape 3x2. %e A292357 T(4,2) = 39 counts 12 5-ominoes of shape 4x2, 18 6-ominoes of shape 4x2, 8 7-ominoes of shape 4x2, and 1 8-omino of shape 4x2. %t A292357 A287151 = Import["https://oeis.org/A287151/b287151.txt", "Table"][[All, 2]]; %t A292357 imax = Length[A287151]; %t A292357 mmax = Sqrt[2 imax] // Ceiling; %t A292357 Clear[V]; VV = Table[V[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten; %t A292357 Do[Evaluate[VV[[i]]] = A287151[[i]], {i, 1, imax}]; %t A292357 V[0, _] = V[_, 0] = 0; %t A292357 T[m_, n_] := If[m == 1 || n == 1, 1, U[m, n] - 2 U[m, n-1] + U[m, n-2]]; %t A292357 U[m_, n_] := V[m, n] - 2 V[m-1, n] + V[m-2, n]; %t A292357 Table[T[m-n+1, n], {m, 1, mmax}, {n, 1, m}] // Flatten // Take[#, imax]& (* _Jean-François Alcover_, Sep 22 2019 *) %Y A292357 Rows 2..4 are A034182, A034184, A034187. %Y A292357 Main diagonal is A268404. %Y A292357 Cf. A268371 (nonequivalent), A287151, A308359. %K A292357 nonn,tabl %O A292357 1,5 %A A292357 _Andrew Howroyd_, Oct 02 2017