This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292370 #21 May 15 2021 06:16:58 %S A292370 0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,3,2,2,2,1,0,0,0,1,0,0,0,1,0,0,0,3,2, %T A292370 2,2,1,0,0,0,1,0,0,0,1,0,0,0,3,2,2,2,1,0,0,0,1,0,0,0,1,0,0,0,7,6,6,6, %U A292370 5,4,4,4,5,4,4,4,5,4,4,4,3,2,2,2,1,0,0,0,1,0,0,0,1,0,0,0,3,2,2,2,1,0,0,0,1,0,0,0,1,0,0,0,3,2,2,2,1,0,0,0,1 %N A292370 A binary encoding of the zeros in base-4 representation of n. %H A292370 Antti Karttunen, <a href="/A292370/b292370.txt">Table of n, a(n) for n = 0..65536</a> %H A292370 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A292370 For all n >= 0, A000120(a(n)) = A160380(n). %e A292370 n a(n) base-4(n) binary(a(n)) %e A292370 A007090(n) A007088(a(n)) %e A292370 -- ---- ---------- ------------ %e A292370 1 0 1 0 %e A292370 2 0 2 0 %e A292370 3 0 3 0 %e A292370 4 1 10 1 %e A292370 5 0 11 0 %e A292370 6 0 12 0 %e A292370 7 0 13 0 %e A292370 8 1 20 1 %e A292370 9 0 21 0 %e A292370 10 0 22 0 %e A292370 11 0 23 0 %e A292370 12 1 30 1 %e A292370 13 0 31 0 %e A292370 14 0 32 0 %e A292370 15 0 33 0 %e A292370 16 3 100 11 %e A292370 17 2 101 10 %t A292370 Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 0, 1, 0], 2], {n, 0, 120}] (* _Michael De Vlieger_, Sep 21 2017 *) %o A292370 (Scheme) (define (A292370 n) (if (zero? n) n (let loop ((n n) (b 1) (s 0)) (if (< n 4) s (let ((d (modulo n 4))) (if (zero? d) (loop (/ n 4) (+ b b) (+ s b)) (loop (/ (- n d) 4) (+ b b) s))))))) %o A292370 (Python) %o A292370 from sympy.ntheory.factor_ import digits %o A292370 def a(n): %o A292370 k=digits(n, 4)[1:] %o A292370 return 0 if n==0 else int("".join('1' if i==0 else '0' for i in k), 2) %o A292370 print([a(n) for n in range(111)]) # _Indranil Ghosh_, Sep 21 2017 %Y A292370 Cf. A007088, A007090, A160380, A292371, A292372, A292373. %Y A292370 Cf. A291770 (analogous sequence for base-3). %K A292370 nonn,base %O A292370 0,17 %A A292370 _Antti Karttunen_, Sep 15 2017