cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292393 Base-n digit k involved in anomalous cancellation in the proper fraction A292288(n)/A292289(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 4, 6, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 8, 12, 1, 23, 6, 15, 13, 9, 1, 29, 1, 31, 12, 18, 17, 7, 1, 37, 19, 13, 1, 41, 1, 43, 11, 24, 1, 47, 8, 21, 20, 17, 1, 53, 12, 15, 20, 30, 1, 59, 1, 61, 31, 9, 16, 13, 1, 67, 24, 23, 1, 71, 1, 73, 37
Offset: 2

Views

Author

Michael De Vlieger, Sep 15 2017

Keywords

Comments

For prime base p, (p + 1)/(p^2 + p) simplifies to 1/p by canceling digit k = 1 in the numerator and denominator. This fraction is written "11/110" in base p and simplifies to "1/10" = 1/p.
See link "Base-b proper fractions n/d having nontrivial anomalous cancellation, with 2 <= b <= 120 and d <= b^2 + b" at A292289 for more information. - Michael De Vlieger, Sep 18 2017

Examples

			a(10) = 6, since A292288(10)/A292289(10) = 16/64 = 1/4; we can "cancel" k = 6 in the numerator and the denominator and obtain 1/4 anomalously.
a(12) = 11, since A292288(12)/A292289(12) = 23/138 = "1b/b6" in base 12, where "b" represents digit 11. This fraction simplifies to 1/6. Digit "b" = 11 is canceled and "anomalously" yields 1/6.
a(16) = 5, since A292288(16)/A292289(16) = 21/84 = hexadecimal "15/54". This fraction simplifies to 1/4. We can "cancel" k = 5 in the numerator and denominator and obtain 1/4 anomalously.
Table relating a(n) with A292288(n) and A292289(n).
n = base and index.
N = A292288(n) = smallest numerator that pertains to D.
D = A292289(n) = smallest denominator that has a nontrivial anomalous cancellation in base n.
n/d = simplified ratio of numerator N and denominator D.
k = a(n) = base-n digit anomalously canceled in the numerator and denominator to arrive at N/D.
.
   n     N       D   N/D       k
  ------------------------------
   2     3       6   1/2       1
   3     4      12   1/3       1
   4     7      14   1/2       3
   5     6      30   1/5       1
   6    11      33   1/3       5
   7     8      56   1/7       1
   8    15      60   1/4       7
   9    13      39   1/3       4
  10    16      64   1/4       6
  11    12     132   1/11      1
  12    23     138   1/6      11
  13    14     182   1/13      1
  14    27     189   1/7      13
  15    22     110   1/5       7
  16    21      84   1/4       5
  17    18     306   1/17      1
  18    35     315   1/9      17
  19    20     380   1/19      1
  20    39     390   1/10     19
		

Crossrefs

Cf. A292288 (numerators), A292289 (denominators).

Programs

  • Mathematica
    Table[Intersection[IntegerDigits[#1, b], IntegerDigits[#2, b]] & @@ Flatten@ Catch@ Do[If[Length@ # > 0, Throw[#], #] &@ Map[{#, m} &, #] &@ Select[Range[b + 1, m - 1], Function[k, Function[{r, w, n, d}, AnyTrue[Flatten@ Map[Apply[Outer[Divide, #1, #2] &, #] &, Transpose@ MapAt[# /. 0 -> Nothing &, Map[Function[x, Map[Map[FromDigits[#, b] &@ Delete[x, #] &, Position[x, #]] &, Intersection @@ {n, d}]], {n, d}], -1]], # == Divide @@ {k, m} &]] @@ {k/m, #, First@ #, Last@ #} &@ Map[IntegerDigits[#, b] &, {k, m}] - Boole[Mod[{k, m}, b] == {0, 0}]] ], {m, b, b^2 + b}], {b, 2, 30}] // Flatten (* Michael De Vlieger, Sep 15 2017 *)

Formula

a(p) = 1.
a(p + 1) = p.