A292404 p-INVERT of (1,0,0,1,0,0,0,0,0,0,...), where p(S) = 1 - S^4.
0, 0, 0, 1, 0, 0, 4, 1, 0, 6, 8, 1, 4, 28, 12, 2, 56, 66, 16, 71, 220, 120, 76, 496, 560, 218, 816, 1821, 1148, 1200, 4396, 4847, 2816, 8386, 15536, 11122, 14716, 39256, 42760, 33346, 82480, 135292, 109760, 161931, 353256, 385528, 369380, 794378, 1198288
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 4, 0, 0, 6, 0, 0, 4, 0, 0, 1)
Crossrefs
Cf. A292402.
Programs
-
Mathematica
z = 60; s = x + x^4; p = 1 - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292404 *)
Formula
G.f.: -((x^3 (1 + x)^4 (1 - x + x^2)^4)/((-1 + x + x^4) (1 + x + x^4) (1 + x^2 + 2 x^5 + x^8))).
a(n) = a(n-4) + 4*a(n-7) + 6*a(n-10) + 4*a(n-13) + a(n-16) for n >= 17.
Comments