cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292407 Expansion of Product_{k>=1} ((1 - k^k*x^k)/(1 + k^k*x^k)).

This page as a plain text file.
%I A292407 #13 Sep 16 2017 17:11:26
%S A292407 1,-2,-6,-40,-386,-4952,-77116,-1406164,-29389570,-692122610,
%T A292407 -18136684128,-523599632000,-16516245738140,-565284631133600,
%U A292407 -20867650682241704,-826570263691236456,-34971594470460748146,-1574134630989710480092
%N A292407 Expansion of Product_{k>=1} ((1 - k^k*x^k)/(1 + k^k*x^k)).
%H A292407 Seiichi Manyama, <a href="/A292407/b292407.txt">Table of n, a(n) for n = 0..386</a>
%F A292407 Convolution of A292311 and A292312.
%F A292407 Convolution inverse of A292406.
%F A292407 a(n) ~ -2*n^n * (1 - 2*exp(-1)/n - (exp(-1) + 6*exp(-2))/n^2). - _Vaclav Kotesovec_, Sep 16 2017
%t A292407 nmax = 20; CoefficientList[Series[Product[(1 - k^k*x^k)/(1 + k^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 16 2017 *)
%Y A292407 Cf. A292311, A292312, A292406.
%K A292407 sign
%O A292407 0,2
%A A292407 _Seiichi Manyama_, Sep 15 2017