This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292408 #27 Jul 23 2024 20:34:44 %S A292408 1,5,46,669,11096,196888,3596104,66867564,1258801076,23925376862, %T A292408 458284630844,8835496339452,171286387714900,3336406717216564, %U A292408 65257828878990784,1281049596756607960,25228921286295314736,498287389997552607290,9866927329534881618772,195837489338961245840240 %N A292408 Number of 3-regular maps with 2n vertices on the torus, up to orientation-preserving isomorphisms. %H A292408 E. Krasko, A. Omelchenko, <a href="https://arxiv.org/abs/1709.03225">Enumeration of r-regular Maps on the Torus. Part I: Enumeration of Rooted and Sensed Maps</a>, arXiv preprint arXiv:1709.03225[math.CO], 2017. %H A292408 E. Krasko, A. Omelchenko, <a href="https://doi.org/10.1016/j.disc.2018.07.013">Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus</a>, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 584-599. %H A292408 Riccardo Murri, <a href="https://arxiv.org/abs/1202.1820">Fatgraph algorithms and the homology of the Kontsevich complex</a>, arXiv preprint arXiv:1202.1820, 2012. %Y A292408 3-regular maps on the sphere: A112948. %Y A292408 Cf. A292971 (4-regular), A292972 (5-regular), A292974 (6-regular). %K A292408 nonn %O A292408 1,2 %A A292408 _Evgeniy Krasko_, Sep 15 2017