This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292410 #62 Jan 26 2021 03:51:36 %S A292410 0,1,9,17,17,57,41,97,33,105,185,17,113,217,329,449,65,201,345,497, %T A292410 657,825,1001,161,353,553,761,977,1201,1433,1673,1921,129,393,665,945, %U A292410 1233,1529,1833,2145,2465,2793,3129,3473,3825,89,457,833,1217,1609,2009,2417,2833,3257 %N A292410 Difference between (2n+1)^2 and highest power of 2 less than or equal to (2n+1)^2. %H A292410 Robert Israel, <a href="/A292410/b292410.txt">Table of n, a(n) for n = 0..10000</a> %F A292410 a(n) = A053645(A016754(n)). - _Michel Marcus_, Sep 16 2017 %e A292410 a(0) = 1^2 - 2^0 = 0. %e A292410 a(1) = 3^2 - 2^3 = 1. %e A292410 a(2) = 5^2 - 2^4 = 9. %e A292410 a(3) = 7^2 - 2^5 = 17. %e A292410 a(4) = 9^2 - 2^6 = 17. %p A292410 seq((2*n+1)^2 - 2^ilog2((2*n+1)^2), n=0..100); @ _Robert Israel_, Oct 19 2017 %t A292410 Table[# - 2^Floor@ Log2@ # &[(2 n + 1)^2], {n, 0, 53}] (* _Michael De Vlieger_, Sep 18 2017 *) %o A292410 (PARI) a(n) = my(k = 0); while(2^k < (2*n+1)^2, k++); if (k, k--); (2*n+1)^2 - 2^k; \\ _Michel Marcus_, Sep 16 2017 %Y A292410 Cf. A000079 (2^n), A016754 (odd squares), A053645 (distance to power of 2), A056577. %K A292410 nonn,look %O A292410 0,3 %A A292410 _Zhandos Mambetaliyev_, Sep 15 2017 %E A292410 More terms from _Michel Marcus_, Sep 16 2017