cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292414 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k).

This page as a plain text file.
%I A292414 #12 Feb 02 2019 04:50:56
%S A292414 1,2,4,72,272,2080,270400,2146432,33751296,403702272,1103810790400,
%T A292414 17635156690944,563431073648640,13515197331283968,360331952265379840,
%U A292414 37785849814204784082944,1209091844251972299456512,77374499118322174520328192,3713890953695657990811811840
%N A292414 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k).
%H A292414 Vaclav Kotesovec, <a href="/A292414/b292414.txt">Table of n, a(n) for n = 0..183</a>
%F A292414 Conjecture: log(a(n)) ~ sqrt(2)*log(2)*n^(3/2). - _Vaclav Kotesovec_, Aug 22 2018
%t A292414 nmax = 20; Table[SeriesCoefficient[Product[(1+2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%o A292414 (PARI) {a(n)= polcoef(prod(k=1, n, (1+2^n*x^k +x*O(x^n))), n)};
%o A292414 for(n=0,20, print1(a(n), ", ")) \\ _G. C. Greubel_, Feb 02 2019
%Y A292414 Cf. A292304, A292415, A292416.
%K A292414 nonn,look
%O A292414 0,2
%A A292414 _Vaclav Kotesovec_, Sep 16 2017