cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292415 a(n) = [x^n] Product_{k>=1} (1 / (1 - 2^n*x^k)).

This page as a plain text file.
%I A292415 #9 Feb 02 2019 04:50:35
%S A292415 1,2,20,584,70160,34670624,69827571776,567417533153408,
%T A292415 18519367937794769152,2422592506675732350501376,
%U A292415 1268890961666701371908767613952,2659755334364276805914758224778627072,22306192375831301664022382396371369078034432
%N A292415 a(n) = [x^n] Product_{k>=1} (1 / (1 - 2^n*x^k)).
%H A292415 G. C. Greubel, <a href="/A292415/b292415.txt">Table of n, a(n) for n = 0..57</a>
%F A292415 a(n) ~ 2^(n^2).
%t A292415 nmax = 15; Table[SeriesCoefficient[Product[1/(1-2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%o A292415 (PARI) {a(n)= polcoef(prod(k=1, n, 1/(1-2^n*x^k +x*O(x^n))), n)};
%o A292415 for(n=0,20, print1(a(n), ", ")) \\ _G. C. Greubel_, Feb 02 2019
%Y A292415 Cf. A292414, A292416.
%K A292415 nonn
%O A292415 0,2
%A A292415 _Vaclav Kotesovec_, Sep 16 2017