cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292416 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k) / (1 - 2^n*x^k).

This page as a plain text file.
%I A292416 #8 Feb 02 2019 04:50:45
%S A292416 1,4,40,1296,149024,71573568,141871849600,1143771307901184,
%T A292416 37183988027710374400,4854666820584582571623424,
%U A292416 2540262650941956832151944038400,5322109355556594174041950822678401024,44623279107562668799968801377926722975965184
%N A292416 a(n) = [x^n] Product_{k>=1} (1 + 2^n*x^k) / (1 - 2^n*x^k).
%C A292416 Convolution of A292414 and A292415.
%H A292416 G. C. Greubel, <a href="/A292416/b292416.txt">Table of n, a(n) for n = 0..57</a>
%F A292416 a(n) ~ 2^(n^2 + 1).
%t A292416 nmax = 15; Table[SeriesCoefficient[Product[(1+2^n*x^k)/(1-2^n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%o A292416 (PARI) {a(n)= polcoef(prod(k=1, n, ((1+2^n*x^k)/(1-2^n*x^k) +x*O(x^n))), n)};
%o A292416 for(n=0,20, print1(a(n), ", ")) \\ _G. C. Greubel_, Feb 02 2019
%Y A292416 Cf. A292414, A292415.
%K A292416 nonn
%O A292416 0,2
%A A292416 _Vaclav Kotesovec_, Sep 16 2017