cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292417 a(n) = [x^n] Product_{k>=1} 1/(1 - n^2*x^k).

This page as a plain text file.
%I A292417 #9 Feb 02 2019 04:32:23
%S A292417 1,1,20,819,70160,10188775,2240751636,692647082799,286013768613952,
%T A292417 151994274055319070,101020305070908050100,82086758986568812837856,
%U A292417 80056656965795630400382608,92282612223268812357487227077,124113156850218393012451734737460
%N A292417 a(n) = [x^n] Product_{k>=1} 1/(1 - n^2*x^k).
%H A292417 G. C. Greubel, <a href="/A292417/b292417.txt">Table of n, a(n) for n = 0..214</a>
%F A292417 a(n) ~ n^(2*n) * (1 + 1/n^2 + 2/n^4 + 3/n^6 + 5/n^8 + 7/n^10), for coefficients see A000041.
%t A292417 nmax = 20; Table[SeriesCoefficient[Product[1/(1-n^2*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
%o A292417 (PARI) {a(n)= polcoef(prod(k=1, n, 1/(1-n^2*x^k +x*O(x^n))), n)};
%o A292417 for(n=0,20, print1(a(n), ", ")) \\ _G. C. Greubel_, Feb 02 2019
%Y A292417 Cf. A077335, A124577, A292304.
%K A292417 nonn
%O A292417 0,3
%A A292417 _Vaclav Kotesovec_, Sep 16 2017