This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292419 #7 Feb 02 2019 04:32:48 %S A292419 1,2,12,96,872,9960,138180,2298016,44686224,995739498,24993249820, %T A292419 697309946784,21396151468536,715827315312200,25926440773118340, %U A292419 1010478298772398080,42162515927954808352,1875027040759682964144,88527520717734462201756,4422273966757678408594560 %N A292419 a(n) = [x^n] Product_{k>=1} (1 + n*x^k) / (1 - n*x^k). %C A292419 Convolution of A291698 and A124577. %H A292419 G. C. Greubel, <a href="/A292419/b292419.txt">Table of n, a(n) for n = 0..385</a> %F A292419 a(n) ~ 2 * n^n * (1 + 2/n + 4/n^2 + 8/n^3 + 14/n^4 + 24/n^5 + 40/n^6 + 64/n^7 + 100/n^8 + 154/n^9 + 232/n^10), for coefficients see A015128. %t A292419 nmax = 25; Table[SeriesCoefficient[Product[(1+n*x^k)/(1-n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}] %o A292419 (PARI) {a(n)= polcoef(prod(k=1, n, ((1+n*x^k)/(1-n*x^k) +x*O(x^n))), n)}; %o A292419 for(n=0,20, print1(a(n), ", ")) \\ _G. C. Greubel_, Feb 02 2019 %Y A292419 Cf. A124577, A291698, A292418. %K A292419 nonn %O A292419 0,2 %A A292419 _Vaclav Kotesovec_, Sep 16 2017