A292435 Array T read by antidiagonals: T(m,n) = number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (3,0), (2,1), (1,2), (0,3)}.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 4, 4, 4, 2, 3, 9, 12, 12, 9, 3, 1, 2, 3, 4, 3, 2, 1, 3, 9, 15, 21, 21, 15, 9, 3, 6, 24, 48, 72, 84, 72, 48, 24, 6, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 4, 16, 36, 64, 88, 96, 88, 64, 36, 16, 4, 10, 50, 130, 250, 380, 460, 460, 380, 250, 130, 50, 10, 1, 4, 10, 20, 31, 40, 44, 40, 31, 20, 10, 4, 1
Offset: 0
Examples
Array T(m,n) begins n\m 0 1 2 3 4 5 6 7 8 9 10 -------------------------------------------------------------------- [0] 1 1 1 1 2 3 1 3 6 1 4 [1] 1 2 1 4 9 2 9 24 3 16 50 [2] 1 1 4 12 3 15 48 6 36 130 10 [3] 1 4 12 4 21 72 10 64 250 20 150 [4] 2 9 3 21 84 12 88 380 31 255 1215 [5] 3 2 15 72 12 96 460 40 355 1830 101 [6] 1 9 48 10 88 460 44 420 2325 135 1416 [7] 3 24 6 64 380 40 420 2520 155 1740 11046 [8] 6 3 36 250 31 355 2325 155 1860 12600 546 [9] 1 16 130 20 255 1830 135 1740 12600 580 7882 [10] 4 50 10 150 1215 101 1416 11046 546 7882 63056
Links
- Jackson Evoniuk, Steven Klee, Van Magnan, Enumerating Minimal Length Lattice Paths, 2017, also Enumerating Minimal Length Lattice Paths, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
Crossrefs
Cf. A007318.
Programs
-
Sage
S = [[1,0], [0,1], [3,0], [2,1], [1,2], [0,3]] q = 8 # q = range for m,n; change q for more data numPathsMat = matrix(q+1,q+1,0) distMatrix = matrix(q+1,q+1,0) for m in [0..q]: for n in [0..q]: # first determine S-distance to (m,n) d = minNeighborDist = max(distMatrix.list()) + 1 for s in S: if m-s[0]>=0 and n-s[1]>=0: d = distMatrix[m-s[0],n-s[1]] if d < minNeighborDist: minNeighborDist=d distMatrix[m,n] = minNeighborDist+1 # next count number of minimal S-paths count = 0 for s in S: if m-s[0]>=0 and n-s[1]>=0: if distMatrix[m-s[0],n-s[1]]==distMatrix[m,n]-1: count += numPathsMat[m-s[0],n-s[1]] numPathsMat[m,n] = count numPathsMat[0,0] = 1 print(numPathsMat)
Formula
G.f.: Sum(T(m,n)*x^m*y^n,m>=0,n>=0) = Sum(binomial(q+r,r)*(x^3+x^2*y+x*y^2+y^3)^q*(x+y)^r,q>=0,0<=r<=2).