cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292436 Array T read by antidiagonals: T(m,n) is the number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (2,1), (1,2)}.

This page as a plain text file.
%I A292436 #31 Mar 15 2020 10:04:30
%S A292436 1,1,1,1,2,1,1,1,1,1,1,2,4,2,1,1,3,9,9,3,1,1,4,1,2,1,4,1,1,5,3,9,9,3,
%T A292436 5,1,1,6,6,24,36,24,6,6,1,1,7,10,1,3,3,1,10,7,1,1,8,15,4,16,24,16,4,
%U A292436 15,8,1,1,9,21,10,50,100,100,50,10,21,9,1,1,10,28,20,1,4,6,4,1,20,28,10,1
%N A292436 Array T read by antidiagonals: T(m,n) is the number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (2,1), (1,2)}.
%H A292436 Jackson Evoniuk, Steven Klee, Van Magnan, <a href="http://fac-staff.seattleu.edu/klees/web/minpaths.pdf">Enumerating Minimal Length Lattice Paths</a>, 2017, also <a href="https://www.emis.de/journals/JIS/VOL21/Klee/klee2.html">Enumerating Minimal Length Lattice Paths</a>, J. Int. Seq., Vol. 21 (2018), Article 18.3.6.
%F A292436 T(m,n) = binomial(m-n,n) for m>=2*n;
%F A292436 T(m,n) = binomial(q+r,r)*binomial(q+r,m-q) for 1/2*n<=m<=2*n, where m+n = 3*q+r with 0<=r<=2;
%F A292436 T(m,n) = binomial(n-m,m) for m<=1/2*n.
%e A292436 Array T(m,n) begins
%e A292436 n\m 0    1    2    3    4    5    6    7    8    9   10
%e A292436 0   1    1    1    1    1    1    1    1    1    1    1
%e A292436 1   1    2    1    2    3    4    5    6    7    8    9
%e A292436 2   1    1    4    9    1    3    6   10   15   21   28
%e A292436 3   1    2    9    2    9   24    1    4   10   20   35
%e A292436 4   1    3    1    9   36    3   16   50    1    5   15
%e A292436 5   1    4    3   24    3   24  100    4   25   90    1
%e A292436 6   1    5    6    1   16  100    6   50  225    5   36
%e A292436 7   1    6   10    4   50    4   50  300   10   90  441
%e A292436 8   1    7   15   10    1   25  225   10  120  735   15
%e A292436 9   1    8   21   20    5   90    5   90  735   20  245
%e A292436 10  1    9   28   35   15    1   36  441   15  245 1960
%o A292436 (Sage) # For an implementation see A292435.
%Y A292436 Cf. A007318, A292435.
%K A292436 nonn,walk,tabl
%O A292436 0,5
%A A292436 _Steven Klee_, Dec 08 2017