This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292436 #31 Mar 15 2020 10:04:30 %S A292436 1,1,1,1,2,1,1,1,1,1,1,2,4,2,1,1,3,9,9,3,1,1,4,1,2,1,4,1,1,5,3,9,9,3, %T A292436 5,1,1,6,6,24,36,24,6,6,1,1,7,10,1,3,3,1,10,7,1,1,8,15,4,16,24,16,4, %U A292436 15,8,1,1,9,21,10,50,100,100,50,10,21,9,1,1,10,28,20,1,4,6,4,1,20,28,10,1 %N A292436 Array T read by antidiagonals: T(m,n) is the number of lattice walks of minimal length from (0,0) to (m,n) using steps in directions from {(1,0), (0,1), (2,1), (1,2)}. %H A292436 Jackson Evoniuk, Steven Klee, Van Magnan, <a href="http://fac-staff.seattleu.edu/klees/web/minpaths.pdf">Enumerating Minimal Length Lattice Paths</a>, 2017, also <a href="https://www.emis.de/journals/JIS/VOL21/Klee/klee2.html">Enumerating Minimal Length Lattice Paths</a>, J. Int. Seq., Vol. 21 (2018), Article 18.3.6. %F A292436 T(m,n) = binomial(m-n,n) for m>=2*n; %F A292436 T(m,n) = binomial(q+r,r)*binomial(q+r,m-q) for 1/2*n<=m<=2*n, where m+n = 3*q+r with 0<=r<=2; %F A292436 T(m,n) = binomial(n-m,m) for m<=1/2*n. %e A292436 Array T(m,n) begins %e A292436 n\m 0 1 2 3 4 5 6 7 8 9 10 %e A292436 0 1 1 1 1 1 1 1 1 1 1 1 %e A292436 1 1 2 1 2 3 4 5 6 7 8 9 %e A292436 2 1 1 4 9 1 3 6 10 15 21 28 %e A292436 3 1 2 9 2 9 24 1 4 10 20 35 %e A292436 4 1 3 1 9 36 3 16 50 1 5 15 %e A292436 5 1 4 3 24 3 24 100 4 25 90 1 %e A292436 6 1 5 6 1 16 100 6 50 225 5 36 %e A292436 7 1 6 10 4 50 4 50 300 10 90 441 %e A292436 8 1 7 15 10 1 25 225 10 120 735 15 %e A292436 9 1 8 21 20 5 90 5 90 735 20 245 %e A292436 10 1 9 28 35 15 1 36 441 15 245 1960 %o A292436 (Sage) # For an implementation see A292435. %Y A292436 Cf. A007318, A292435. %K A292436 nonn,walk,tabl %O A292436 0,5 %A A292436 _Steven Klee_, Dec 08 2017