This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292462 #25 May 19 2018 12:36:13 %S A292462 1,1,5,31,278,3287,48256,843567,17081639,392869430,10112244792, %T A292462 287927207846,8984122319997,304828239096197,11173376516829974, %U A292462 439988449921648076,18523908107054523591,830292183207722271065,39475390430795389762048,1984220622132901208082220 %N A292462 Number of partitions of n with n sorts of part 1. %H A292462 Alois P. Heinz, <a href="/A292462/b292462.txt">Table of n, a(n) for n = 0..386</a> %F A292462 a(n) = [x^n] 1/(1-n*x) * Product_{j=2..n} 1/(1-x^j). %F A292462 a(n) ~ n^n * (1 + 1/n^2 + 1/n^3 + 2/n^4 + 2/n^5 + 4/n^6 + 4/n^7 + 7/n^8 + 8/n^9 + 12/n^10), for coefficients see A002865. - _Vaclav Kotesovec_, Sep 19 2017 %F A292462 a(n) = Sum_{j=0..n} A002865(j) * n^(n-j). - _Alois P. Heinz_, Sep 22 2017 %e A292462 a(2) = 5: 2, 1a1a, 1a1b, 1b1a, 1b1b. %p A292462 b:= proc(n, i, k) option remember; `if`(n=0 or i=1, k^n, %p A292462 `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k)) %p A292462 end: %p A292462 a:= n-> b(n$3): %p A292462 seq(a(n), n=0..23); %t A292462 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, k^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]]; %t A292462 a[0] = 1; a[n_] := b[n, n, n]; %t A292462 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, May 19 2018, translated from Maple *) %Y A292462 Cf. A002865, A246935, A292463, A292503, A292507, A292567. %Y A292462 Main diagonal of A292741. %K A292462 nonn %O A292462 0,3 %A A292462 _Alois P. Heinz_, Sep 16 2017