This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292466 #53 Sep 26 2017 09:26:26 %S A292466 0,1,1,0,4,8,5,5,21,53,0,20,40,124,336,25,25,105,265,761,2105,0,100, %T A292466 200,620,1680,4724,13144,125,125,525,1325,3805,10525,29421,81997,0, %U A292466 500,1000,3100,8400,23620,65720,183404,511392,625,625,2625,6625,19025,52625 %N A292466 Triangle read by rows: T(n,k) = 4*T(n-1,k-1) + T(n,k-1) with T(2*m,0) = 0 and T(2*m+1,0) = 5^m. %H A292466 Seiichi Manyama, <a href="/A292466/b292466.txt">Rows n = 0..139, flattened</a> %F A292466 T(n+1,n)^2 - 5*T(n,n)^2 = 11^n. %e A292466 First few rows are: %e A292466 0; %e A292466 1, 1; %e A292466 0, 4, 8; %e A292466 5, 5, 21, 53; %e A292466 0, 20, 40, 124, 336; %e A292466 25, 25, 105, 265, 761, 2105; %e A292466 0, 100, 200, 620, 1680, 4724, 13144; %e A292466 125, 125, 525, 1325, 3805, 10525, 29421, 81997. %e A292466 -------------------------------------------------------------- %e A292466 The diagonal is {0, 1, 8, 53, 336, 2105, ...} and %e A292466 the next diagonal is {1, 4, 21, 124, 761, 4724, ...}. %e A292466 Two sequences have the following property: %e A292466 1^2 - 5* 0^2 = 1 (= 11^0), %e A292466 4^2 - 5* 1^2 = 11 (= 11^1), %e A292466 21^2 - 5* 8^2 = 121 (= 11^2), %e A292466 124^2 - 5* 53^2 = 1331 (= 11^3), %e A292466 761^2 - 5* 336^2 = 14641 (= 11^4), %e A292466 4724^2 - 5*2105^2 = 161051 (= 11^5), %e A292466 ... %Y A292466 The diagonal of the triangle is A091870. %Y A292466 The next diagonal of the triangle is A108404. %Y A292466 T(n,k) = b*T(n-1,k-1) + T(n,k-1): A292789 (b=-3), A292495 (b=-2), A117918 and A228405 (b=1), A227418 (b=2), this sequence (b=4). %K A292466 nonn,tabl,look %O A292466 0,5 %A A292466 _Seiichi Manyama_, Sep 22 2017