A292470 Let P be the sequence of distinct lattice points defined by the following rules: P(1) = (0,0), P(2) = (1,0), and for any n > 2, P(n) is the closest lattice point to P(n-1) such that P(n) is a vertex of the convex hull of the set of points {P(1), ..., P(n)}, and in case of a tie, P(n) maximizes the dot product of the vectors (P(n-2), P(n-1)) and (P(n-1), P(n)); a(n) = Y-coordinate of P(n).
0, 0, 1, 1, 0, -1, -1, 0, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 3, 3, 2, 1, -1, -2, -3, -3, -2, 0, 1, 2, 3, 4, 4, 3, 2, 0, -3, -4, -4, -3, -2, 0, 1, 2, 3, 4, 5, 5, 4, 2, -1, -5, -6, -6, -5, -3, 2, 3, 4, 5, 6, 6, 5, 4, 2, -1, -5, -6, -7, -7, -6, -4, -1, 3, 4, 5, 6
Offset: 1
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..1000
- Rémy Sigrist, C++ program for A292470
Crossrefs
Cf. A292469.
Comments