A292490 p-INVERT of the odd positive integers, where p(S) = 1 - S - 7 S^2.
1, 11, 68, 365, 2019, 11328, 63321, 353483, 1974124, 11026373, 61584323, 343956104, 1921047729, 10729356747, 59925127764, 334691142941, 1869302113507, 10440343236752, 58310941508105, 325675681470731, 1818949357172988, 10159115194159989, 56740239146359107
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, 0, 17, 7)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 7 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292490 *)
-
PARI
x='x+O('x^99); Vec(((1+x)*(1+5*x+8*x^2))/(1-5*x-17*x^3-7*x^4)) \\ Altug Alkan, Oct 03 2017
Formula
G.f.: -(((1 + x) (1 + 5 x + 8 x^2))/(-1 + 5 x + 17 x^3 + 7 x^4)).
a(n) = 5*a(n-1) + 17*a(n-3) + 7*a(n-4) for n >= 5.
Comments