A292491 p-INVERT of the odd positive integers, where p(S) = 1 + S - 2 S^2.
-1, 0, 8, 16, 24, 96, 360, 1008, 2808, 8640, 26568, 79056, 235224, 707616, 2128680, 6380208, 19123128, 57386880, 172213128, 516586896, 1549603224, 4648967136, 13947373800, 41841649008, 125523529848, 376572006720, 1129720271688, 3389156563536, 10167456936024
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -3, 9)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s - 2 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292491 *)
-
PARI
x='x+O('x^99); Vec(((1+x)*(-1+4*x+x^2))/((1-3*x)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017
Formula
G.f.: -(((1 + x) (-1 + 4 x + x^2))/((-1 + 3 x) (1 + 3 x^2))).
a(n) = 3*a(n-1) - 3*a(n-2) + 9*a(n-3) for n >= 5.
Comments