A292493 p-INVERT of the odd positive integers, where p(S) = 1 + S - 3 S^2.
-1, 1, 12, 25, 61, 266, 963, 3053, 10220, 35413, 120345, 405682, 1376119, 4676201, 15859212, 53768225, 182400581, 618792826, 2098887003, 7119249973, 24149097580, 81915342653, 277858469505, 942504046562, 3197013067439, 10844389616401, 36784545696012
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, -2, 11, 1)
Programs
-
Mathematica
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 + s + 3 s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292493 *)
-
PARI
x='x+O('x^99); Vec(((1+x)*(1-5*x-2*x^2))/(-1+3*x-2*x^2+11*x^3+x^4)) \\ Altug Alkan, Oct 05 2017
Formula
G.f.: -(((1 + x) (-1 + 5 x + 2 x^2))/(-1 + 3 x - 2 x^2 + 11 x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) + 11*a(n-3) + a(n-4) for n >= 5.
Comments