This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292510 #14 Sep 17 2017 23:17:31 %S A292510 4,7,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %T A292510 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, %U A292510 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 %N A292510 a(n) = smallest k >= 1 such that {1, p(n,2), p(n,3), ..., p(n,k)} can be partitioned into two sets with equal sums, where p(n,m) is m-th n-gonal number. %C A292510 Conjecture: a(n) = 7 for n > 5. %H A292510 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a> %F A292510 p(n,1) + p(n,2) + p(n,4) + p(n,7) = p(n,3) + p(n,5) + p(n,6) (= 28*n-42). So a(n) <= 7. %e A292510 n = 3 %e A292510 1+3+6 = 10 %e A292510 n = 4 %e A292510 1+4+16+49 = 9+25+36 (= 70 = 28*4-42) %e A292510 n = 5 %e A292510 1+5+22+35 = 12+51 (=63) %e A292510 n = 6 %e A292510 1+6+28+91 = 15+45+66 (= 126 = 28*6-42) %o A292510 (Ruby) %o A292510 def f(k, n) %o A292510 n * ((k - 2) * n - k + 4) / 2 %o A292510 end %o A292510 def A(k, n) %o A292510 ary = [1] %o A292510 s_ary = [0] %o A292510 (1..n).each{|i| s_ary << s_ary[-1] + f(k, i)} %o A292510 m = s_ary[-1] %o A292510 a = Array.new(m + 1){0} %o A292510 a[0] = 1 %o A292510 (1..n).each{|i| %o A292510 b = a.clone %o A292510 (0..[s_ary[i - 1], m - f(k, i)].min).each{|j| b[j + f(k, i)] += a[j]} %o A292510 a = b %o A292510 s_ary[i] % 2 == 0 ? ary << a[s_ary[i] / 2] : ary << 0 %o A292510 } %o A292510 ary %o A292510 end %o A292510 def B(n) %o A292510 i = 1 %o A292510 while A(n, i)[-1] == 0 %o A292510 i += 1 %o A292510 end %o A292510 i %o A292510 end %o A292510 def A292510(n) %o A292510 (3..n).map{|i| B(i)} %o A292510 end %o A292510 p A292510(100) %Y A292510 Cf. A019568, A158092, A158380, A292474. %K A292510 nonn %O A292510 3,1 %A A292510 _Seiichi Manyama_, Sep 17 2017