This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292517 #79 Aug 08 2023 22:22:44 %S A292517 48,495452160,38903149816763645952000, %T A292517 127654439655255918929515331054014121902080000 %N A292517 Number of doubly symmetric diagonal Latin squares of order 4n. %C A292517 A doubly symmetric square has symmetries in both horizontal and vertical planes. %C A292517 The plane symmetry requires one-to-one correspondence between the values of elements a[i,j] and a[N+1-i,j] in a vertical plane, and between the values of elements a[i,j] and a[i,N+1-j] in a horizontal plane for 1 <= i,j <= N. - _Eduard I. Vatutin_, Alexey D. Belyshev, Oct 09 2017 %C A292517 Belyshev (2017) proved that doubly symmetric diagonal Latin squares exist only for orders N == 0 (mod 4). %C A292517 Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that a(n) <= A293778(4n). - _Eduard I. Vatutin_, May 03 2021 %H A292517 A. D. Belyshev, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=89143#post89143">Proof that the order of a doubly symmetric diagonal Latin squares is a multiple of 4</a>, 2017 (in Russian) %H A292517 Eduard I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=89332#post89332">Discussion about properties of diagonal Latin squares at forum.boinc.ru, corrected value a(4)</a> (in Russian). %H A292517 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1635">On the interconnection between double and central symmetries in diagonal Latin squares</a> (in Russian). %H A292517 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, <a href="http://ceur-ws.org/Vol-1940/paper10.pdf">On Some Features of Symmetric Diagonal Latin Squares</a>, CEUR WS, vol. 1940 (2017), pp. 74-79. %H A292517 Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, <a href="https://doi.org/10.25045/jpit.v10.i2.01">Central symmetry properties for diagonal Latin squares</a>, Problems of Information Technology (2019) No. 2, 3-8. %H A292517 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_symm.pdf">Investigation of the properties of symmetric diagonal Latin squares</a>, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19. (in Russian) %H A292517 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_symm_v2.pdf">Investigation of the properties of symmetric diagonal Latin squares. Working on errors</a>, Intellectual and Information Systems (2017), pp. 30-36. (in Russian) %H A292517 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian) %H A292517 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %F A292517 a(n) = A287650(n) * (4n)!. %e A292517 Doubly symmetric diagonal Latin square example: %e A292517 0 1 2 3 4 5 6 7 %e A292517 3 2 7 6 1 0 5 4 %e A292517 2 3 1 0 7 6 4 5 %e A292517 6 7 5 4 3 2 0 1 %e A292517 7 6 3 2 5 4 1 0 %e A292517 4 5 0 1 6 7 2 3 %e A292517 5 4 6 7 0 1 3 2 %e A292517 1 0 4 5 2 3 7 6 %e A292517 In the horizontal direction there is a one-to-one correspondence between elements 0 and 7, 1 and 6, 2 and 5, 3 and 4. %e A292517 In the vertical direction there is also a correspondence between elements 0 and 1, 2 and 4, 6 and 7, 3 and 5. %Y A292517 Cf. A003191, A287649, A287650, A293778, A340550. %K A292517 nonn,more,hard %O A292517 1,1 %A A292517 _Eduard I. Vatutin_, Sep 18 2017 %E A292517 a(2) corrected by _Eduard I. Vatutin_, Alexey D. Belyshev, Oct 09 2017 %E A292517 Edited and a(3) from A287650 added by _Max Alekseyev_, Aug 23 2018, Sep 07 2018 %E A292517 a(4) from _Andrew Howroyd_, May 31 2021