This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292518 #14 Oct 26 2018 18:32:50 %S A292518 1,-1,0,-1,1,0,-1,1,0,1,-2,1,0,1,-1,-1,2,-1,1,-2,1,0,0,0,0,1,-1,1,-3, %T A292518 2,-1,2,-1,0,1,-1,0,-2,3,-1,1,-2,1,1,-2,0,0,2,0,-1,0,2,-2,-1,-1,1,2, %U A292518 -1,1,-1,1,-2,1,-2,3,1,-2,0,-2,3,-1,-1,0,3,-1,0,-2,1,0,-3,2,2,1,-1,-1,0,0,-1,0,2,-1 %N A292518 Expansion of Product_{k>=1} (1 - x^(k*(k+1)/2)). %C A292518 Convolution inverse of A007294. %C A292518 The difference between the number of partitions of n into an even number of distinct triangular numbers and the number of partitions of n into an odd number of distinct triangular numbers. %C A292518 Euler transform of {-1 if n is a triangular number else 0, n > 0} = -A010054. - _Gus Wiseman_, Oct 22 2018 %H A292518 Seiichi Manyama, <a href="/A292518/b292518.txt">Table of n, a(n) for n = 0..10000</a> %H A292518 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A292518 G.f.: Product_{k>=1} (1 - x^(k*(k+1)/2)). %t A292518 nmax = 90; CoefficientList[Series[Product[1 - x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x] %Y A292518 Product_{k>=1} (1 - x^(k*((m-2)*k-(m-4))/2)): this sequence (m=3), A276516 (m=4), A305355 (m=5). %Y A292518 Cf. A007294, A010054, A024940, A280366, A320767, A320784. %K A292518 sign %O A292518 0,11 %A A292518 _Ilya Gutkovskiy_, Sep 18 2017