cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292522 Number of solutions to +- 1^3 +- 3^3 +- 5^3 +- 7^3 +- ... +- (4*n-1)^3 = 0.

This page as a plain text file.
%I A292522 #19 Sep 19 2017 04:58:08
%S A292522 1,0,0,0,0,0,0,0,2,6,2,10,118,88,254,3308,2558,9578,84568,121804,
%T A292522 496396,3312400,5755724,19021024,116780256,241754350,883730786,
%U A292522 4923089216,11668601596,42357336066,205859270250,538878582526,1974181071852,9194146886086,26277093562150
%N A292522 Number of solutions to +- 1^3 +- 3^3 +- 5^3 +- 7^3 +- ... +- (4*n-1)^3 = 0.
%F A292522 Constant term in the expansion of Product_{k=1..2*n} (x^((2*k-1)^3)+1/x^((2*k-1)^3)).
%e A292522 For n=8 the 2 solutions are
%e A292522 +1^3-3^3-5^3+7^3-9^3+11^3+13^3-15^3-17^3+19^3+21^3-23^3+25^3-27^3-29^3+31^3 = 0 and
%e A292522 -1^3+3^3+5^3-7^3+9^3-11^3-13^3+15^3+17^3-19^3-21^3+23^3-25^3+27^3+29^3-31^3 = 0.
%Y A292522 Cf. A158118, A292476, A292496.
%K A292522 nonn
%O A292522 0,9
%A A292522 _Seiichi Manyama_, Sep 18 2017
%E A292522 a(29)-a(34) from _Alois P. Heinz_, Sep 18 2017