This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292541 #11 May 07 2018 18:00:03 %S A292541 1,-1,2,-3,5,-9,18,-39,88,-200,449,-988,2131,-4527,9540,-20090,42510, %T A292541 -90596,194299,-418105,899493,-1929000,4116944,-8742002,18484225, %U A292541 -38974978,82086786,-172927251,364700265,-770223900,1628602725,-3445907334,7291399538 %N A292541 a(n) is n-th term of the Euler transform of -n,1,1,1,... . %H A292541 Alois P. Heinz, <a href="/A292541/b292541.txt">Table of n, a(n) for n = 0..3260</a> %F A292541 a(n) = [x^n] (1-x)^n / Product_{j=2..n} (1-x^j). %F A292541 a(n) ~ (-1)^n * exp(Pi*sqrt(n/3)/2 + Pi^2/96) * 2^(n - 1/2) / (sqrt(3)*n). - _Vaclav Kotesovec_, May 07 2018 %p A292541 b:= proc(n, i, k) option remember; `if`(n=0 or i<2, %p A292541 binomial(k+n-1, n), add(b(n-i*j, i-1, k), j=0..n/i)) %p A292541 end: %p A292541 a:= n-> b(n$2, -n): %p A292541 seq(a(n), n=0..35); %p A292541 # second Maple program: %p A292541 b:= proc(n, k) option remember; `if`(n=0, 1, add( %p A292541 (numtheory[sigma](j)+k-1)*b(n-j, k), j=1..n)/n) %p A292541 end: %p A292541 a:= n-> b(n, -n): %p A292541 seq(a(n), n=0..35); %p A292541 # third Maple program: %p A292541 b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k=1, %p A292541 combinat[numbpart](n), b(n, k+1)-b(n-1, k+1))) %p A292541 end: %p A292541 a:= n-> b(n, -n): %p A292541 seq(a(n), n=0..35); %t A292541 Table[SeriesCoefficient[(1 - x)^n*Product[1/(1 - x^k), {k, 2, n}], {x, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, May 07 2018 *) %t A292541 b[n_, k_] := b[n, k] = If[n == 0, 1, If[k == 1, PartitionsP[n], b[n, k + 1] - b[n - 1, k + 1]]]; Table[b[n, -n], {n, 0, 40}] (* _Vaclav Kotesovec_, May 07 2018, after _Alois P. Heinz_ *) %Y A292541 Cf. A292463. %K A292541 sign %O A292541 0,3 %A A292541 _Alois P. Heinz_, Sep 18 2017