cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292543 Number of 5-cycles in the n-Sierpinski tetrahedron graph.

This page as a plain text file.
%I A292543 #9 Feb 16 2025 08:33:51
%S A292543 0,96,384,1536,6144,24576,98304,393216,1572864,6291456,25165824,
%T A292543 100663296,402653184,1610612736,6442450944,25769803776,103079215104,
%U A292543 412316860416,1649267441664,6597069766656,26388279066624,105553116266496,422212465065984,1688849860263936
%N A292543 Number of 5-cycles in the n-Sierpinski tetrahedron graph.
%H A292543 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>
%H A292543 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>
%H A292543 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4).
%F A292543 a(n) = 6*4^n = A002023(n) for n > 1.
%F A292543 a(n) = 4*a(n-1) for n > 2.
%F A292543 G.f.: 96*x^/(1 - 4*x).
%t A292543 Table[If[n == 1, 0, 6 4^n], {n, 20}]
%t A292543 Join[{0}, LinearRecurrence[{4}, {96}, 20]]
%t A292543 CoefficientList[Series[96 x/(1 - 4 x), {x, 0, 20}], x]
%Y A292543 Cf. A002023 (6*4^n).
%Y A292543 Cf. A292540 (3-cycles), A292542 (4-cycles), A292545 (6-cycles).
%K A292543 nonn,easy
%O A292543 1,2
%A A292543 _Eric W. Weisstein_, Sep 18 2017