This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292545 #14 Feb 16 2025 08:33:51 %S A292545 0,218,876,3504,14016,56064,224256,897024,3588096,14352384,57409536, %T A292545 229638144,918552576,3674210304,14696841216,58787364864,235149459456, %U A292545 940597837824,3762391351296,15049565405184,60198261620736,240793046482944,963172185931776,3852688743727104 %N A292545 Number of 6-cycles in the n-Sierpinski tetrahedron graph. %H A292545 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A292545 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a> %H A292545 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (4). %F A292545 a(n) = 219*4^(n - 2) for n > 2. %F A292545 a(n) = 4*a(n-1) for n > 2. %F A292545 G.f.: -2*x^2*(109 + 2*x)/(-1 + 4*x). %t A292545 Table[Piecewise[{{0, n == 1}, {218, n == 2}}, 219 4^(n - 2)], {n, 20}] %t A292545 Join[{0, 218}, LinearRecurrence[{4}, {876}, 20]] %t A292545 CoefficientList[Series[-2 x (109 + 2 x)/(-1 + 4 x), {x, 0, 20}], x] %o A292545 (PARI) concat(0, Vec(-2*x^2*(109 + 2*x)/(-1 + 4*x) + O(x^50))) \\ _Michel Marcus_, Sep 19 2017 %Y A292545 Cf. A292540 (3-cycles), A292542 (4-cycles), A292543 (5-cycles). %K A292545 nonn,easy %O A292545 1,2 %A A292545 _Eric W. Weisstein_, Sep 18 2017