A292563 Expansion of Product_{k>=1} (1 + x^((2*k-1)^3)) / (1 - x^((2*k-1)^3)).
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 + x^((2*k-1)^3)) / (1 - x^((2*k-1)^3)), {k, 1, Floor[nmax^(1/3)/2] + 1}], {x, 0, nmax}], x]
Formula
a(n) ~ exp(2 * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(7/2) * 3^(1/4) * sqrt(Pi) * n^(7/8)).
Comments