This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292567 #15 Dec 30 2020 08:22:20 %S A292567 1,-1,5,-29,270,-3233,47800,-838561,17013991,-391779640,10091836632, %T A292567 -287491284748,8973657413421,-304549220113387,11165193890312790, %U A292567 -439726629957500944,18514829984975265703,-829953080825411342745,39461813340364709540008 %N A292567 a(n) = [x^n] 1/(1+n*x) * Product_{j=2..n} 1/(1-x^j). %H A292567 Alois P. Heinz, <a href="/A292567/b292567.txt">Table of n, a(n) for n = 0..386</a> %F A292567 a(n) ~ (-1)^n * n^n * (1 + 1/n^2 - 1/n^3 + 2/n^4 - 2/n^5 + 4/n^6 - 4/n^7 + 7/n^8 - 8/n^9 + 12/n^10), for coefficients see A002865. - _Vaclav Kotesovec_, Sep 19 2017 %p A292567 b:= proc(n, i, k) option remember; `if`(n=0 or i=1, (-k)^n, %p A292567 `if`(i>n, 0, b(n-i, i, k))+b(n, i-1, k)) %p A292567 end: %p A292567 a:= n-> b(n$3): %p A292567 seq(a(n), n=0..23); %t A292567 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i == 1, (-k)^n, If[i > n, 0, b[n - i, i, k]] + b[n, i - 1, k]]; %t A292567 a[n_] := If[n == 0, 1, b[n, n, n]]; %t A292567 a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 30 2020, after _Alois P. Heinz_ *) %Y A292567 Cf. A002865, A292462. %K A292567 sign %O A292567 0,3 %A A292567 _Alois P. Heinz_, Sep 19 2017