cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292580 T(n,k) is the start of the first run of exactly k consecutive integers having exactly 2n divisors. Table read by rows.

Original entry on oeis.org

5, 2, 6, 14, 33, 12, 44, 603, 242, 10093613546512321, 24, 104, 230, 3655, 11605, 28374, 171893, 48, 2511, 7939375, 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 19 2017

Keywords

Comments

The number of terms in row n is A119479(2n).
Düntsch and Eggleton (1989) has typos for T(3,5) and T(10,3) (called D(6,5) and D(20,3) in their notation). Letsko (2015) and Letsko (2017) both have a wrong value for T(7,3).
The first value required to extend the data is T(6,13) <= 586683019466361719763403545; the first unknown value that may exist is T(12,19). See the a-file for other known values and upper bounds up to T(50,7).

Examples

			T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p-1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
   n  T(n,1), T(n,2), ...
  ==  ========================================================
   1  5, 2;
   2  6, 14, 33;
   3  12, 44, 603, 242, 10093613546512321;
   4  24, 104, 230, 3655, 11605, 28374, 171893;
   5  48, 2511, 7939375;
   6  60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
   7  192, 29888, 76571890623;
   8  120, 2295, 8294, 153543, 178086, 5852870, 17476613;
   9  180, 6075, 959075, 66251139635486389922, T(9,5);
  10  240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
  11  3072, 2200933376, 104228508212890623;
  12  360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
  13  12288, 689278976, 1489106237081787109375;
  14  960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
  15  720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
  16  840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
  ...
		

Crossrefs

Formula

T(n,2) = A075036(n). - Jon E. Schoenfield, Sep 23 2017

Extensions

a(1)-a(25) from Düntsch and Eggleton (1989) with corrections by Jon E. Schoenfield, Sep 19 2017
a(26)-a(27) from Giovanni Resta, Sep 20 2017
a(28)-a(29) from Hugo van der Sanden, Jan 12 2022
a(30) from Hugo van der Sanden, Sep 03 2022
a(31) added by Hugo van der Sanden, Dec 05 2022; see "calculation of T(6,11)" link for a list of the people involved.
a(32) added by Hugo van der Sanden, Dec 18 2022; see "calculation of T(6,12)" link for a list of the people involved.