cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292602 a(n) = floor(A005940(1+n)/4).

This page as a plain text file.
%I A292602 #8 Dec 01 2017 18:51:07
%S A292602 0,0,0,1,1,1,2,2,1,2,3,3,6,4,6,4,2,3,5,5,8,7,11,6,12,12,18,9,31,13,20,
%T A292602 8,3,5,8,7,13,10,15,10,19,17,26,15,43,22,33,12,30,24,36,25,61,37,56,
%U A292602 18,85,62,93,27,156,40,60,16,4,6,9,11,16,16,24,14,22,27,41,21,68,31,47,20,35,38,57,35,96,52,78
%N A292602 a(n) = floor(A005940(1+n)/4).
%H A292602 Antti Karttunen, <a href="/A292602/b292602.txt">Table of n, a(n) for n = 0..16383</a>
%H A292602 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A292602 a(n) = A002265(A005940(1+n)).
%F A292602 4*a(n) + A292603(n) = A005940(1+n).
%e A292602 The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292603):
%e A292602                                       0
%e A292602                                       |
%e A292602                    ...................0...................
%e A292602                   0                                       1
%e A292602         1......../ \........1                   2......../ \........2
%e A292602        / \                 / \                 / \                 / \
%e A292602       /   \               /   \               /   \               /   \
%e A292602      /     \             /     \             /     \             /     \
%e A292602     1       2           3       3           6       4           6       4
%e A292602    2 3     5 5         8 7    11 6        12 12   18 9        31 13   20 8
%o A292602 (Scheme) (define (A292602 n) (let* ((x (A005940 (+ 1 n))) (d (modulo x 4))) (/ (- x d) 4)))
%Y A292602 Cf. A002265, A003961, A005940, A292603, A295895.
%K A292602 nonn
%O A292602 0,7
%A A292602 _Antti Karttunen_, Dec 01 2017