This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292602 #8 Dec 01 2017 18:51:07 %S A292602 0,0,0,1,1,1,2,2,1,2,3,3,6,4,6,4,2,3,5,5,8,7,11,6,12,12,18,9,31,13,20, %T A292602 8,3,5,8,7,13,10,15,10,19,17,26,15,43,22,33,12,30,24,36,25,61,37,56, %U A292602 18,85,62,93,27,156,40,60,16,4,6,9,11,16,16,24,14,22,27,41,21,68,31,47,20,35,38,57,35,96,52,78 %N A292602 a(n) = floor(A005940(1+n)/4). %H A292602 Antti Karttunen, <a href="/A292602/b292602.txt">Table of n, a(n) for n = 0..16383</a> %H A292602 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A292602 a(n) = A002265(A005940(1+n)). %F A292602 4*a(n) + A292603(n) = A005940(1+n). %e A292602 The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292603): %e A292602 0 %e A292602 | %e A292602 ...................0................... %e A292602 0 1 %e A292602 1......../ \........1 2......../ \........2 %e A292602 / \ / \ / \ / \ %e A292602 / \ / \ / \ / \ %e A292602 / \ / \ / \ / \ %e A292602 1 2 3 3 6 4 6 4 %e A292602 2 3 5 5 8 7 11 6 12 12 18 9 31 13 20 8 %o A292602 (Scheme) (define (A292602 n) (let* ((x (A005940 (+ 1 n))) (d (modulo x 4))) (/ (- x d) 4))) %Y A292602 Cf. A002265, A003961, A005940, A292603, A295895. %K A292602 nonn %O A292602 0,7 %A A292602 _Antti Karttunen_, Dec 01 2017