cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292603 Doudna-tree reduced modulo 4: a(n) = A005940(1+n) mod 4.

This page as a plain text file.
%I A292603 #17 Dec 01 2017 18:51:16
%S A292603 1,2,3,0,1,2,1,0,3,2,3,0,1,2,3,0,3,2,1,0,3,2,1,0,1,2,3,0,1,2,1,0,1,2,
%T A292603 1,0,3,2,3,0,1,2,1,0,3,2,3,0,1,2,3,0,1,2,1,0,3,2,3,0,1,2,3,0,1,2,3,0,
%U A292603 1,2,3,0,3,2,1,0,3,2,1,0,3,2,3,0,1,2,3,0,3,2,1,0,3,2,1,0,1,2,3,0,1,2,1,0,3,2,3,0,1,2,3,0,3,2,1,0,3,2,1,0,1
%N A292603 Doudna-tree reduced modulo 4: a(n) = A005940(1+n) mod 4.
%H A292603 Antti Karttunen, <a href="/A292603/b292603.txt">Table of n, a(n) for n = 0..16383</a>
%H A292603 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A292603 a(n) = A010873(A005940(1+n)).
%F A292603 a(n) + 4*A292602(n) = A005940(1+n).
%F A292603 a(2n+1) = 2*a(n) mod 4.
%F A292603 a(A004767(n)) = 0.
%F A292603 a(A016813(n)) = 2.
%F A292603 a(2*A156552(A246261(n))) = 1.
%F A292603 a(2*A156552(A246263(n))) = 3.
%F A292603 a(n * 2^(1+A246271(A005940(1+n)))) = 1.
%e A292603 The first six levels of the binary tree (compare also to the illustrations given at A005940 and A292602):
%e A292603                                1
%e A292603                                |
%e A292603                                2
%e A292603                 ............../ \..............
%e A292603                3                               0
%e A292603         ....../ \......                 ....../ \......
%e A292603        1               2               1               0
%e A292603       / \             / \             / \             / \
%e A292603      /   \           /   \           /   \           /   \
%e A292603     3     2         3     0         1     2         3     0
%e A292603    / \   / \       / \   / \       / \   / \       / \   / \
%e A292603   3   2 1   0     3   2 1   0     1   2 3   0     1   2 1   0
%o A292603 (Scheme) (define (A292603 n) (modulo (A005940 (+ 1 n)) 4))
%Y A292603 Cf. A003961, A005940, A292602.
%Y A292603 Cf. A004767 (gives the positions of 0's), A016813 (of 2's).
%Y A292603 Cf. also A246261, A246263, A246271, A292271, A292274, A292375, A292377, A292381, A292383, A292384, A292583.
%K A292603 nonn
%O A292603 0,2
%A A292603 _Antti Karttunen_, Dec 01 2017