A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Examples
Triangle starts: [n\k][ 0 1 2 3 4 5 6] -------------------------------------------------- [0][ 1] [1][ 1, 0] [2][ 5, 1, 0] [3][ 61, 28, 1, 0] [4][ 1385, 1011, 123, 1, 0] [5][ 50521, 50666, 11706, 506, 1, 0] [6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
References
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
Crossrefs
Programs
-
Maple
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x): A292604_row := proc(n) if n = 0 then return [1] fi; add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end: for n from 0 to 6 do A292604_row(n) od;
-
Mathematica
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0; F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}]; row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]]; Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
Sage
def A292604_row(n): if n == 0: return [1] S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n)) return expand(S).list() + [0] for n in (0..6): print(A292604_row(n))
Formula
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.
Comments